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Complex systems models for strategic 
decision making

M H Lyons, I Adjali, D Collings and K O Jensen

A number of simulation techniques may be applied to strategy and decision-making. In using such techniques it is important to
understand the role of models, in the context of the wider decision-making process which is largely a communal and political
process; the choice of a particular approach or technique depends not only on the type of decision being considered, but also on
the stage of the decision-making process (which in turn affects the type of problem under consideration).

Models which take into account the dynamics of a system can give insight into possible outcomes and indications of unintended
consequences. Such models may not necessarily reproduce all aspects of a complex adaptive system; there is a continuum of
modelling techniques, ranging from static equilibrium models through to agent-based approaches which can incorporate
evolution and learning. The trade-offs between alternative approaches is discussed. 

1. Introduction
Complexity provides a starting point for discussing both
the environment in which a corporation is operating, and
its own internal structure. Complexity concepts can be
used to develop robust strategies in a rapidly evolving
environment, highlight the possible impact of emergent
properties, and identify the organisational capabilities that
will ensure corporate survival in the 21st century.
Modelling techniques developed for complex adaptive
systems are being applied to a wide variety of business
problems, including market demand forecasts, industry
evolution and strategy development. Although many
techniques are still in their infancy, such models are
expected to be key to effective management in the future.

In this paper, the role of models in supporting strategic
decision-making is discussed; of particular interest are
those techniques developed to support the study of
complex adaptive systems.

1.1 Complexity and models
Intuitively, the study of complex adaptive systems and the
concept of complexity is readily applicable to strategic
decision-making within companies. If the economy is a
complex adaptive system [1], a proper understanding of
complexity theory should provide a better basis on which
to build strategic models. To some extent this is true, in
that models built to study complex systems often require
fewer abstractions. However, the advantage of a model is
that it is a simplification of reality which enables people to
understand key aspects of a situation. There is a danger
that a more realistic model is, in fact, too complex, so that

it is no longer possible to understand the output or to
decide how to act. Simple models, based on an equilibrium
system, may be preferred because of the illusion of
prediction and certainty they give the user. 

1.2 Models to understand/simulate complex 
systems

Complex systems of interest are often described as being
on the ‘edge of chaos’ and displaying self-organised order.
Such systems are continuously changing, but preserve
some degree of structure at all times1. Such change is
varyingly described as learning, evolution or adaptation,
depending on context. From the modelling viewpoint we
are dealing with systems which are dynamic in nature and
for which static models, based on equilibrium or stasis, are
inappropriate. One result of this emphasis on dynamic
systems, is that we can no longer expect models to predict.
Because the systems are continually changing, outcomes
of changes are path dependent and may be multi-valued.
The object of a model is no longer to predict but to
understand. Some authors question the extent to which a
model can aid understanding, as similar results or
outcomes can be the result of a number of different
dynamical processes — the fact that a model can
reproduce observed behaviour does not guarantee that the
underlying assumptions are correct: ‘Computational
models are particularly good at developing theory [and]
suggesting the logical consequences of a set of
assumptions...[But]..computational models do not prove
these theories they help develop....Expectations that
1 This is in many ways a self-fulfilling observation: systems which are either
static, or display total randomness, are rarely identified as being ‘complex’.



Complex systems models for strategic decision making

BT Technology Journal • Vol 21 No 2 • April 200312

computational models can demonstrate or prove anything
beyond theory building is asking too much of them and will
lead to disappointment’ [2]. This is consistent with
Schrage’s view that ‘... models are most useful when they
are used to challenge existing formulations rather than to
validate or verify them’ [3]. 

There is a deeper link between models and complex
systems highlighted by Holland [4] who suggests that
complex adaptive systems anticipate the future by means
of various internal models which are simplified
representations of the environment. Holland distinguishes
between a ‘tacit internal model’ which prescribes current
action under an implicit prediction of future state and an
‘overt internal model’ which provides a basis for explicit
(internal) exploration of alternatives. This distinction
provides an admirable means of describing the use of
models in strategic decision-making. A successful
modelling approach involves taking tacit internal models
(held by individuals) and turning them into overt internal
models which can be debated, criticised and simulated.

1.3 Strategic decision making — role of models
A number of simulation techniques may be applied to
strategy and decision making. In using such techniques it is
important to understand the role of models, in the context
of the wider decision-making process which is largely a
communal and political process; the choice of a particular
approach or technique depends not only on the type of
decision being considered, but also on the stage of the
decision-making process (which in turn affects the type of
problem under consideration). 

1.4 The need for models
Although many models adopt a relatively static view of the
world (consistent with a determinist, positivist view of the
world), complex systems models highlight the dynamics of
change. It is assumed that organisations and industries are
complex systems characterised (typically) by high numbers
of component entities, and a high degree of
interconnection (and hence, interaction). In this context,
the outcome of any change to the system (such as an
investment decision or policy change) cannot always be
predicted. To some extent, this reflects the cognitive limits
of human beings; humans find it difficult to understand the
behaviour arising from mutually interacting entities. As de
Guess [5] notes: ‘... most people can deal with only three or
four variables at a time, and do so through only one or two
time iterations’. Similarly, Larichev and Moskovitch [6]
suggest that ‘... decision makers completely apprehend
only those decision problems in which a maximum 5-8
structural units interact in the knowledge representation.’

In practice, managers make simplifying assumptions.
Typically, simple cause/effect relationships are assumed,
rather than multiple interactions; systems are simple and

independent of each other, and there are no delays in the
system. 

This has implications for the way companies develop
strategies. Mintzberg [7], for example, is highly critical of
strategic planning as a concept and Rosenhead [8], in a
critical review of complexity and management, highlights
the tendency of some writers to reject a role for analytic
methods in management, emphasising instead the
importance of political processes in determining strategy. 

Van der Heijden [9] identifies three approaches to
strategic planning: 

• rationalists, who aim to plan an optimum strategy in a
forecast environment,

• evolutionists, who emphasise the complexity and
uncertainty of the world and the way companies’
strategies emerge through political processes (and
may deny any value to analytical approaches),

• processualists who recognise the uncertainty of the
future, but also hold that it is not entirely
unpredictable — the processualist will recognise the
political processes at work in the formation of
strategy, but also accepts the value of analytical and
rational techniques (e.g. simulations and scenarios
planning) in helping to structure the political debate. 

The processualist approach is adopted in this paper.
Models are developed to improve strategy development,
but it follows from the above that model building should
not be seen as an end in itself, but as part of a wider
decision-making process which is essentially social in
nature, involving negotiation and debate. 

1.5 The modelling context
Earlier work [10, 11] has emphasised the need to take into
account the political context in which a model is
developed and used. In particular, a framework of
procedural intelligence developed by Humphreys [12] was
used to formalise the role of modelling in decision-making
and strategy development. Humphreys argues that in order
to resolve initially unstructured problems (typical of a
business environment), the decision-maker must introduce
constraints on the problem in order to identify an
appropriate course of action. He identifies five levels of
constraint setting, each of which involves a different way
of representing knowledge. The levels represent different
cognitive activities, and any decision problem will involve
all five levels in turn. These are: 

• level 5 — setting boundaries,

• level 4 — choice of frames,

• level 3 — problem structuring (within framework),
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• level 2 — interpreting structure,

• level 1 — assigning referents.

Table 1 is an attempt to locate some commonly used
management tools and processes within Humphreys’
framework.

Table 1 Tools to support cognitive processes
at different procedural levels.

As one moves from higher to lower levels there is a
narrowing of focus. It can be seen that conceptual models
are associated with level 3 and simulations with level 2.
This does not diminish the value of modelling, but does
highlight the fact that model development is carried out in
a wider decision-making context. Too often, managers leap
to a model as a solution without properly considering what
the problem is. 

1.6 What do models tell us?
There is still the question of what information can be
derived from a model or simulation. As we saw above, one
school of thought is essentially negative — models are
confined to the role of theory development or for
challenging existing formulations. A more positive view is
that: ‘... models allow us to broaden our viewpoint beyond
our fixed notions, based on current reality, of what can
transpire. These scenarios help expand our linear
expectations to include all the possible futures we may
encounter’ [13]. Both viewpoints reflect the idea that
models allow one to explore the outcomes of alternative
strategic choices, rather than providing a forecast of a
predetermined future. Thus, the type of knowledge coming
out of complex systems models is itself ‘complex’ (or at
least, complicated!) — not single-valued answers (this is
what you should do), but rather a statement of options

which place limits on the extent to which control can be
exercised. This pushes much of the decision making back to
the higher cognitive levels in Humphreys’ model, where
objectives and values dominate. In reality, of course,
decisions have always been made on the basis of the
decision-makers’ values. Schrage [3] points out that the
types of model produced by an organisation reflect the
values and perceptions within the organisation.

1.7 Multiple models
In general terms, models [3]:

• act as tools for negotiation,

• create/unearth choice,

• define a context for trade-offs.

In this list we see a clear departure from the idea of a
single objective model which predicts an optimal strategy.
This is implicit in Humphreys’ framework discussed above.
By the time a model is developed there has been a
considerable narrowing down of the original problem. Yet,
the choice of different boundaries (level 5) or different
frameworks (level 4) would inevitably result in a different
model. This reflects a general characteristic of social
systems. Such systems are undoubtedly complex and
adaptive but, unlike the physical sciences, there is no
complex, coherent body of theory to describe them.
Instead, a number of different and independent theories
co-exist. Models of social systems — often conceptual —
represent tentative theories providing one view of an issue.
Such models are rarely interlinked and are not necessarily
mutually incompatible2. For these systems, the post-
modernist view, that truth and knowledge are subjective,
social constructs, seems to make much more sense. 

Thus, different models give different views of a
problem and reflect choices made earlier in a decision
process. There is no single model which will incorporate all
aspects of a strategic problem. This implies that there
could be advantages in developing multiple models of a
particular decision to reflect different viewpoints. This is
Schrage’s view: ‘... the companies that want to see the
most models in the least time are the most design
sensitive; the companies that want ... one perfect model
are the least design sensitive’ [3].

2. Modelling in practice
The preceding discussion has emphasised the dynamic
nature of complex systems and hence the needs for
modelling techniques which can handle dynamics and
change. Because the systems are dynamic, equilibrium
models which imply predetermined and forecastable

Procedural intelligence level Support

5 — Setting boundaries Scenarios planning

4 — Choice of frames Scenarios planning
Cognitive mapping

3 — Problem structuring within 
frame

Conceptual models
Enterprise models
Influence diagrams

2 — Interpreting structure Exploration of conceptual model 
— alternative scripts
‘What-ifs’
Econometric models
Game theory
Simulations
Expert systems
Sensitivity analysis 

1 — Assigning referents Market surveys/analysis 
Competitor analysis
Data-mining
Setting targets

2 For example, consider the different schools of thought in politics,
sociology, psychology as well as debates between neo-classical and other
breeds of economists.
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futures or predict a ‘correct strategy’ are misleading.
Instead of models as forecasting tools, we emphasised the
use of models as tools to aid understanding and critical
debate. The discussion also highlighted the value of
applying different modelling techniques to a single
problem as a means of identifying the range of issues
which can influence outcomes. In the remainder of this
paper, a number of dynamic modelling techniques are
applied to two strategic issues: understanding market
growth for a new service or product (product diffusion),
and strategic choice in a competitive market. 

We consider three techniques which may be used to
study aspects of dynamic systems:

• system dynamics [14],

• agent-based models [4],

• evolutionary game theory [15].

The discussion illustrates how models can aid
understanding of a strategic issue and the way different
techniques give different insights. The models often work
at different levels of detail. However, in most cases a key
issue is the type of cognitive model used to describe agent
behaviour.

3. Modelling product diffusion
The telecommunications industry continues to change
rapidly in every aspect of its business. To succeed in this
fluctuating environment, products and services must be
innovative and quick to market. Increasing competition has
led to a reduction in product lifetimes in many industries
and as the number of potential telecommunications
services increases, similar pressures will reduce the
development cycle of new services. New products and
services must address customer needs and enter the
market quickly to recoup investment. Managing an
organisation’s portfolio will therefore require a deep
understanding of the factors determining a product’s life
cycle.

The diffusion of an innovation (knowledge or actual
take-up of a new product or service) is the process by
which that innovation is communicated through channels
over time among the members of a social system [16]. The
key aspects required to understand the diffusion process
and the adoption of a new product are therefore the
methods and nature of communications and the cognitive
process involved in assessing the utility or profitability of
that product. 

Conventional diffusion models, such as the Bass model
[17] describe the diffusion process by a formula such as
equation (1):

where N(t), g(t, N), NT, are the number of adopters, the
coefficient of diffusion at time t and total number of
potential adopters in the social system. This shows that the
rate of change in adopters with respect to time is
proportional to the number of people who have not
adopted. The conventional diffusion modelling technique is
simply the fitting of a suitable mathematical form to
empirical data.

The coefficient g describes the characteristics of the
diffusion process and is determined by the nature of the
innovation, the communications channels used and the
social network. Variation of this parameter allows tailoring
of the model; g can be a constant, a function of N or a
combination. With the coefficient as a constant, it
describes the external influences, i.e. outside of the social
system, such as the effect of mass media. With the
coefficient g as a function of the number of adopters, the
diffusion is influenced by factors internal to the social
system, i.e. imitation by consumers is represented. 

This basic form is observed in quantitative studies in
real life. It can be considered as an observed macroscopic
property of the diffusion system. However, the equations
are essentially phenomenological. They provide little
insight into the diffusion process and hence offer little
guidance for managing product life cycles. Both system
dynamics and agent-based models offer a means of
investigating the diffusion process in detail and offer an
ability to explore the impact of different marketing
strategies.

3.1 System dynamics approach
There are a large number of factors that influence a
potential customer’s decision to purchase a product. These
factors could include the quality of a product/service, or
consumer awareness of the product. The influence that
these factors will have on the purchase decision and on the
other factors will vary with time. Thus, product sales are
inherently dynamic. Given these considerations, a system
dynamics approach was adopted to build a model which
generates product life cycles from the influence certain
factors have on a prospective customer’s purchasing
decision [18]. For example, advertising expenditure and
customers’ perceived need for a service can both influence
new service diffusion [14].

3.1.1 Customer choice model (cognitive model)
The decision-making procedure a customer goes through
when electing to purchase a new service was broken down
into a number of stages (Fig 1). 

The major factors determining a customer’s decision to
buy are an understanding of the service, its utility and its
acceptability. The service provider will have an influence

dN t( )
dt

------------- g t N,( ) NT N t( )–[ ]= ...... (1)



Complex systems models for strategic decision making

BT Technology Journal • Vol 21 No 2 • April 2003 15

over each of these factors depending on its commercial
strategy, as shown schematically in Fig 2.

Fig 2 Overview of the customer choice model.

The model itself incorporates a number of decision-
making sectors which run simultaneously — under-
standing, utility, acceptability, and adoption.

Decisions will be dependent on the values of the
influencing factors: marketing, quality and price.
Understanding is influenced by a service provider changing
the amount of marketing and word of mouth from new
adopters in the adoption sector. Utility, or the value of the
service to the customer, is influenced by quality and
marketing which are controlled by a service provider and

by changes of cumulative adoption in the adoption sector.
The acceptability of a service is influenced by price and
quality which are assumed to be controlled by a service
provider. System externalities, such as changes in price and
quality of input products to the service provider, are
outside the scope of this paper.

Output from each decision-making sector is a fraction
which represents the probability a customer understands
the service, has a need for the service or finds the service
acceptable. These fractions are passed into the adoption
sector where the overall probability of purchase is
calculated. The probability of purchase is then applied to
the potential market and annual adoption calculated.

3.1.2 Results 1 — Development of fax market
(with/without postal strike)

In order to provide a basis for the modelling exercise, the
historical launch of Group 3 fax machines in the UK was
considered. The exercise illustrates how models can be
used to test hypotheses.

Adoption of fax in the UK began in the late seventies
and followed a slow but steady growth until the late
eighties when there was a significant increase. This is
believed to have been due to the one-off event of the 1987
UK postal strike, although there are suggestions that new
consumer services often take-off when the price falls
below a critical threshold.

To produce the effect of the UK postal strike, the actual
utility and price acceptability were significantly increased
for the duration of the event, demonstrating that the
model can be used to explore the knock-on effects of
events occurring in the past. 

Figure 3 illustrates the actual and calculated adoption
of fax from 1980. When considering the two plots in Fig 3,
it can be seen that the diffusion figures derived from the
model, which include the effect of the postal strike,
compare extremely well to the actual historical data. By
1994 approximately 59% of the potential market had

Do I understand the service?

Is it needed?

Is quality and cost acceptable?

buy

wait

no

no

no

yes

yes

yes

Fig 1 Model flow diagram.
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Fig 3 Graph of adoption of fax machines versus time.
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actually adopted fax compared to the calculated figure of
60%. Thus, the model supports the postal strike
hypothesis.

3.1.3 Results 2 — Alternative marketing/product
development strategies

A second use of the model is to investigate alternative
strategies. By applying a number of commercial strategies
to maximise fax adoption, different life cycles were
generated. Figure 4 shows three different life cycles
generated by different strategies concerning investment in
quality and marketing over time.  

Fig 4 Graph of adoption versus time showing effect of varying 
marketing and quality spend.

It can be seen that investing in quality or marketing,
although changing the product life cycle, does not produce
maximum cumulative adoption for the case of fax. When
investing the entire annual budget into marketing, the
service produces a plateau life cycle. This plateau shape is
the result of the market becoming aware of the service
very early and a number of innovators adopting the service
very quickly. After approximately 5 years, adoption levels
off and remains at an approximately constant level. New
purchases are made as utility increases — a result of the
steady increase in the fax base.

Investing the entire annual budget into improving the
quality of service produced a very slow-developing growth
curve. The market is unaware of the service and therefore
unaware of any increase in quality. Gradually diffusion
accelerates as satisfied customers, through word of mouth,
make more people aware of the service.

Adoption is greatly improved by the annual budget
being invested on the factor that has the greatest influence
in both present and future time periods. To achieve this a

number of scenarios must be applied and an understanding
gained of the influence each variable has and when this
influence will have its maximum effect.

The product life cycle generated by applying a strategy
to maximise adoption was symmetric and produced by the
market initially being made aware of the service by the
entire annual budget being spent on marketing.
Subsequently, the annual budget was invested on a
combination of marketing and quality according to the
marketing growth requirements. After 12 years, the
difference in market development for the three scenarios is
significant (Table 2 ).

Table 2 Market development for the three scenarios.

Greater cumulative adoption could have been achieved
with the strategic use of price reductions, but for simplicity
only two influences were used to give an indication of the
type of results that could be produced.

This type of model could be used to explore a number
of possible future scenarios. It is not a predictive device but
can lend insight into the impact of different investment
strategies.

3.2 Agent-based approach
The system dynamics approach still treats populations as if
all members were identical and gives no insight into the
processes by which information is transferred at the micro-
level. In order to produce a more realistic model of the
diffusion process, the agent-based modelling approach can
be adopted [19, 20]. This technique involves creating a
population of discrete entities, or ‘agents’, each
representing an individual member of the real population
of consumers in question. Each of the agents contains a set
of goals, beliefs and actions and can interact with other
agents or the environment in which the population exists.
Agent-based modelling enables the problem to be
addressed using a bottom-up approach. The goals, beliefs,
actions and interactions are microscopic attributes of the
system. The overall, macroscopic, behaviour appears as a
result of the combined effect of all the microscopic
attributes and the complex interactions between them and
the accuracy of the model comes from the description of
the behaviour of the individual agents.

In constructing an agent-based model (ABM) of the
diffusion of an innovation within a population of
consumers, we need to create a conceptual model of a
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consumer’s cognitive behaviour and create an accurate and
detailed picture of the social network within the
population. The key elements of an ABM of a population of
consumers are the process by which a consumer decides to
adopt a product, the cognitive process, and the network of
connections that exist within the population through
which information about the product or service is passed,
the social network.

3.2.1 Cognitive process (learning)
There are a number of theories from the social sciences
that shed light on to the problem of describing the
cognitive process. These include theories on human need,
social comparison theories, conditioning theories, decision
and choice theories among others [21]. 

Individuals can be influenced by the information passed
by other individuals and by the observed actions of other
individuals. The theories describing these processes are
known as bandwagon theories. Essentially these are
feedback processes where an increase in the number of
adopters in the population generates information which is
passed back to the rest of the population and, either
directly or indirectly, affects the pressure on individuals to
adopt the innovation. The external process effectively acts
to alter the profitability or perceived profitability of the
adoption. 

There are three main bandwagon processes. In any
single diffusion process the bandwagon process will in
general be a combination of the three with different
weights and be different for each individual.

• Fad theory 

This theory describes the situation where the
profitability of the innovation is ambiguous and where
the information concerning the profitability does not
influence the adoption decision. It is a question of who
within the population has adopted that generates the
pressure to adopt. The pressure can be negative or
positive (following or avoiding trends) and the
influencing members of the population can be highly
specific or general. Examples of this phenomenon are
threats of lost legitimacy, i.e. needing to demonstrate
conformity or non-conformity, and competitive
pressures, i.e. individuals must adopt or potentially
lose out.

• Increasing returns

Increasing returns theories of bandwagons [22]
describe the situation where the profitability of an
innovation is not ambiguous and as the number of
adopters increases, the profitability of an adoption
increases, e.g. as more people bought fax machines,
the profitability of buying one increased as they
became a more useful device since the user could

communicate with a larger number of people. This is
an example of what is known as a positive ‘network
externality’. There can also be examples of negative
externalities where the returns decline. Increasing
returns are not usually influenced by the nature of the
social networks since the profitability of the
innovation, and any increase in it, is obvious from the
innovation itself and information passed by the
members of an individual’s social network are not
relevant. 

• Learning theories 

Learning theories of bandwagons refer to the situation
where there is incomplete information concerning an
innovation. The profitability of the innovation is
considered ambiguous. Before adoption, the
individuals need to acquire more information about
the innovation from other individuals in the social
network. The profitability is then revised up or down
depending upon the information received concerning
the innovation.

In the ABM implementation described in this work, we
have taken a learning theory described by Rogers [23] and a
separate mechanism to describe fad or trend following.

Rogers’ theory was developed independently of the
needs of a computer-based simulation, however its
structure lends itself well to implementation in an ABM.
The model describes a multi-stage process which can be
represented by the flow chart in Fig 5. In the simulation,
each individual follows its own instance of this process. It
has its own, in general unique, values for the parameters
within the flow chart. Comparison with Figs 1 and 2
indicates that Rogers’ model is focusing on the
understanding element of the cognitive model used in the
systems dynamics work described above.

The four stages have been interpreted as described
below.

• Knowledge

This is considered to be how an individual acquires
information about the function of the product which
is then used by the individual to assess how well it
satisfies their needs from a rational point of view.
Knowledge is acquired from the members of the social
network and from advertising.

• Decision

The individual makes the choice of adopting or not
which depends on whether the individual has acquired
enough knowledge about the product and has a
sufficiently high attitude towards it. 

• Implementation

This is the explicit process of adopting the product. 
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• Confirmation

This is the process by which the values of knowledge
and attitude are adjusted in the light of the experience
that the individual has after using the product. 

Each individual follows this flow chart at each arbitrary
time step. Knowledge is passed to and fro between
individuals within the social network of each individual and
can also be injected directly by means of advertising.

In an ABM, the fad process of adoption can be
implemented as follows. At each arbitrary time step, the
individual goes through its social network and looks to see
how many of the population, with whom the individual is
in contact, have adopted. If the proportion of the
acquaintances that have adopted exceeds a threshold
value that is a characteristic of that individual, then that
individual itself adopts. This is the process used by Watts
[24].

3.2.2 Social networks
The form of the social network is crucial to drive the
adoption process. An accurate description is therefore very
important. Although survey data provides a guide to the
structure of the network, it is, however, necessary to use
theoretical constructs since the survey data, if not
incomplete, will be imprecise to a certain degree. Recent
theoretical work on networks [25] has produced many
interesting results relating to the understanding of the
nature of the structures that exist in social systems and
their theoretical properties. These results can be used to
construct appropriate theoretical networks, and the
knowledge of their properties acts as a guide to the
important characteristics, such as when cascading
adoptions occur and the extent of the cascades.

The social network refers to the linkages that exist
between individuals, along which information passes.
Networks have been modelled, abstractly, using graphs —
a collection of nodes with links connecting them. These
have, in the past, been either completely ordered or
completely random. The ordered graph has nodes with the
same number of links between neighbours and the random
arrangement has links between nodes connected to other
nodes within the entire population at random. Most
networks that exist in the real world appear to be
somewhere between these two extremes. From empirical
work by Milgram [26], the mean acquaintance distance
between any two people in the USA was determined to be
around six. Recent work by Watts and Strogatz [27] has
considered ordered networks with additional randomness
introduced. These new structures are known as ‘small
world’ networks with reference to the phenomenon
described above (see Fig 6). Two important parameters
associated with these networks are the length of the
shortest path connecting two individuals (the charac-
teristic path length), and the average probability that two
nodes with a mutual acquaintance will be connected (the

Fig 5 Flow chart of implementation of multi-stage adoption process. The stages are represented in bold and the variables are italicised. 
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 Fig 6 Showing a one-dimensional network and the transition 
between an ordered system and a random one, after Watts and 

Strogatz [27].
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clustering coefficient). Starting with an ordered lattice and
introducing random short cuts, the path length, falls while
the clustering coefficient remains high. We observe
clustering and short global separation between nodes, i.e. a
small world character with local groupings. 

It appears that the small world model is an appropriate
abstract network to use in modelling a social network. It
allows us to characterise real data from surveys, using the
length scale and cluster coefficient, or to permit us to
construct linkages in a realistic way when exact data for a
population is absent. For a simulated set of links, we still
have to have a realistic idea as to what kind of distribution
of connectivities we expect for a network of consumers. 

Amaral et al [28] considered empirical data for a
network of movie actors (where the network was derived
from the collaborations in particular films) and also for
acquaintances of 43 Utah Mormons and 417 high school
students, indicating best friends — both first two friends
and first three friends. For the actor networks,
connectivities were described by a power law for
collaborations between 30 and 300 and truncated for
higher values. In contrast, most friendship and
acquaintance distributions in normal populations appeared
to be distributed in a Gaussian fashion.

3.2.3 Experiments
The cognitive process and the social network described
above were used to create a simulated population of
consumers. A series of experiments were carried out with
the intention of identifying and isolating the most
important parameters involved in the diffusion process —
which parameters most affect the speed and extent of
diffusion and in what way? In modelling a system as
complex as a social system, the level of sophistication can
be increased, almost without limit; however, the
parameters and processes included were purposefully
chosen to give a realistic yet manageable system to
identify and interpret the key factors involved in the
diffusion process. 

The computer simulation was designed to allow full
control of all the parameters chosen. These include
parameters that a marketer may or may not have control
over in real life but the parameters were included to
understand the limitations marketing strategies may face.
The simulations were composed of 5000 agents or
customers. The social linkages were created using a small
world algorithm, with parameters giving a Gaussian
distribution of connectivities for the individuals. The key
parameters were:

• phi — probability of the random links in the
population,

• knowledge seed — determines extent to which
population was seeded with knowledge in a random
fashion, simulating the effect of advertising or
prejudice,

• know SF — the parameter knowledge scale factor,
whereby weights are given randomly to the
significance attached to information passed between
individuals within the population,

• know SF sd — variable standard deviation of above,

• know th — the thresholds for knowledge and attitude,
that need to be exceeded before adoption can occur,
can be seeded randomly, simulating the profile
anticipated in a population, ranging from early
adopters to laggards,

• know th sd — variable standard deviation of above,

• p seed — determines random seeding of the
population with actual adoptions, as this is required
for pure fad processes but is optional for processes
that include learning (the learning and fad processes
can be turned on or off for each experiment). 

Details of the experiments have been published
elsewhere [20]. Although all simulations showed the
characteristic ‘S-shape’ diffusion curve, both the delay in
diffusion and the time over which diffusion occurred were
sensitive to key parameters. Here we present a synopsis of
the result which summarise the trends of the effects on the
speed of the diffusion process in the cases in the exchange
of knowledge processes shown above. 

• phi

An increase has little effect on the duration of the
diffusion process. However, the process occurs earlier
after initiation.

• Knowledge scale factor (know SF)

An increase decreases the duration of the diffusion
process and also makes it occur earlier after initiation.

• Knowledge scale factor standard deviation 
(know SF sd)

An increase leads to a decrease in duration of the
diffusion process but the process occurs later after
initiation. 

• Knowledge threshold (know th)

An increase leads to a small decrease in the duration
of the diffusion process but significantly delays the
process after initiation. 

• Knowledge threshold standard deviation (know th sd)

An increase leads to an increased duration but the
process occurs earlier after initiation. 
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These trends are shown in Table 3. 

Table 3 A summary of the effects, as the stated parameters are 
increased, on ‘duration’ and ‘delay’ to the start of the diffusion process 

(up and down arrows indicate increase and decrease respectively). 

When considering the fad process defined in this work,
the parameter that has the greatest influence on the
extent of the diffusion process is the knowledge threshold
that needs to be exceeded in order for adoption to occur.
The degree of linkage appears not to have a strong effect.
Below a certain level of fad threshold, the average
penetration suddenly increases from around 30% to
around 100%. This behaviour is highly reminiscent of rapid
changes in state of physical systems. Empirical simulations
are currently the only means to determine this transition in
systems with the topology chosen to represent the social
system. The agent-based technique is therefore vital to
investigate this phenomenon for the development of
marketing strategy. The challenge for marketing strategists
is to determine this threshold and to try to reduce it to the
critical level. The results of this sort of simulation could be
applied to products that have a high fashion appeal or
products that have increasing functionality the larger the
number of people an individual interacts with who have
adopted. The technique presented here permits the
anticipated success of such a product to be determined.

4. Strategic options
The models above are looking at the growth of new
markets and have neglected the presence of competition.
However, companies now operate in an increasingly
competitive environment and it is not possible to ignore
the impact of other players on the success or otherwise of
a chosen strategy. 

In principle, game theory provides a means for
optimising strategies in a complex environment. However,
in practice, many analyses are based on simple idealised
two-player forms (such as the prisoner’s dilemma) which
ignore two key features of real situations: lack of
knowledge of pay-offs for different strategies and the fact
that when there are many players the number of options
becomes so large that optimisation is no longer a feasible

approach [29]. In fact, ‘... the theory of games demon-
strated how intractable a task it is to prescribe optimally
rational action in a multiperson situation where interests
are opposed’ [30]. 

Here we use two approaches:

• a strategic simulator (based on a system dynamics
model),

• evolutionary game theory (an extension of classical
game theory that applies when games may be
endlessly repeated and have no obvious end-point).

A feature of both models is that they are built around a
specific strategic situation and do not assume some sort of
generic problem space: ‘... there is no over-arching theory
of complexity that allows us to ignore the contingent
aspects of complex systems. If something really is
complex, it cannot be adequately described by means of a
simple theory. Engaging with complexity entails engaging
with specific complex systems’ [31].

The two models look at similar issues relating to
market entry and competitive strategy. However, the
specific details are slightly different and outlined below.
The interest in the comparison is the different type of
information which can be gained by the alternative
approaches.

4.1 Strategic simulator — BT business game

4.1.1 Overview of model — description of strategic
issue

The BT telecomunications business game [32, 33] is based
on a competitive market model of the telecommunications
industry in a fictitious country. The current version of the
game has four players — three operators and an industry
regulator. The operators offer telephony products to a
market of business and residential customers and the
players make decisions on tariffs, workforce levels,
marketing effort and network infrastructure investments.
In addition, the game includes a wholesale market
including indirect access and interconnect agreements as
well as opportunities for operators to lease plant from each
other. The regulator has powers to control the tariffs set by
the operators as well as a range of powers within the
wholesale area. Typically, the model is set up so that the
three operators represent an incumbent, a second operator
and a new entrant.

The configuration of the game is illustrated in Fig 7.
The central ‘referee’ computer plays host to a system
dynamics model, implemented using Powersim, which
models the retail and wholesale markets. This is linked
dynamically to a Microsoft Excel workbook which enforces
the regulatory constraints on operator decisions and
manages the communications with game players, receiving

duration

phi

know SF

know SF sd

know th

know th sd

delay
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decisions and transmitting results. Each of the players use a
front-end implemented in Microsoft Excel residing on
computers networked to the central computer. The players
interact through the decisions they make and the results
they receive from the game model. However, we
encourage negotiations between the players during the
course of the game; this interaction is as important as, if
not more than, those mediated by the computerised
aspects of the game.

The game is aimed primarily at industry experts who
are able to cope with not only a large decision space
(approximately 30 decisions per round are required) but
also a significant amount of complexity, which is needed
for the game to be seen as a sufficiently realistic model of
a real industry and to enable them to explore the issues
with which they are concerned.

The decision was made not to try to model any specific
country, since, if we did, minor inaccuracies might distract
from the real issues and it would make the game less
versatile.

One of the main objectives was to make a game for
strategic exploration. This was successful — participants
indicated that the game did make them discover and
experiment with strategies they had not considered before.

4.1.2 Knowledge — what do we learn?
A number of points relating to knowledge emerge from this
model:

• the model itself is an embodiment of knowledge,
derived in this case from experts consulted during its
development3,

• the ‘knowledge’ emerging from use of the model is
many valued and no single ‘optimum’ strategy
emerged from playing the game, or could emerge,
since any successful strategy will reflect the strategy
of the other players — this is one source of our
inability to predict the future,

• the number of possible outcomes is huge since 30
decisions per round are made — even if these were
just binary decisions, there are ~1 billion different
decision sets possible, with the game being played,
typically, for 6-8 rounds; any knowledge of strategies
and outcomes is necessarily incomplete. 

In the BT business game, the core model is systemic,
but deterministic. There is no learning or cognitive model
built into the simulation, as these capabilities belong to the
players. The complexity arises because the human players
are capable of developing a rich set of strategies and
changing these in the light of events. Over a period of time
(repeated workshops), some general rules of behaviour
were identified, i.e. some general guidance of what can be
successful strategies and under what circumstances. 

However, as discussed above, only a fraction of the
possibility space can be explored. In principle, the game

Fig 7 Game configuration.

decisions/
outcomes

decisions/
outcomes

decisions/
outcomes

decisions/
outcomes

referee
interaction

model

negotiations

negotiations

negotiations negotiations

player 1
operator 1

player 4
regulator

player 2
operator 2

player 3
operator 3

3 Strictly speaking it reflects the beliefs of those individuals. Whether, and
in what way, those beliefs are ‘true’ is another issue, and reflects the
problems of ‘validating’ strategic simulations.
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could be built as an agent-based model. The agents can
then be given a set of rules for decision-making and the
model run many times to see whether there are typical
outcomes (this is a similar approach to Allen [34] in his
fishing model). There is a trade-off here — the agent-based
model can explore much more of the possibility space, but
with only a limited set of strategies; the workshop-based
game offers much richer strategies, but only a limited
exploration of the possibility space. In both cases, the
knowledge produced is likely to be a set of guidelines or
decision-rules. The complexity of the system modelled
ensures that knowledge of a single ‘optimum’ strategy is
impossible. Furthermore, there are likely to be trade-offs.
In a world where competitor and customer responses are
uncertain, it may be better to find a ‘robust’ strategy,
giving reasonable returns for a number of different possible
futures, rather than optimising for one assumed future. For
a more detailed coverage of the business game, see Jensen
[32, 33].

4.2 Evolutionary game theory
Any agent-based approach must have a method for
choosing between strategies. Evolutionary game theory
provides one such approach. ‘Classical’ game theory is
largely based on the assumption that the players are
rational agents maximising in a complete and perfect
information environment. Due to the linear nature of such
models, the equilibrium solution has frequently been a
matter of simple calculus. However, the unrealistic and
restrictive assumption of rational agents in a complete and
perfect information environment limits the use of
‘classical’ game theory in many real-life situations where
players are boundedly rational and many real-life
phenomena such as seemingly irrational behaviours cannot
be explained using ‘classical’ game theory. Evolutionary
game theory came as an alternative, assuming that the
system is in perpetual evolution where players are adaptive
learning agents who are liable to make mistakes (behaving
in seemingly irrational ways) due to the lack of complete
information about the environment.

The work described here is concerned with how
rational players update their beliefs about their opponents
and how they use these beliefs to aid strategy choice. This
is in contrast with the traditional evolutionary approach,
which analyses the evolution of sophisticated behaviour
through trial and error (or natural selection) in a
population of players. It follows that a major aim was to
investigate the different learning mechanisms that may be
used in evolutionary game theory (EGT) and consider their
relative importance when constructing economic models.

4.2.1 Description of strategic issue
Although there have been many strong results published in
various areas of EGT, the common theme is that instructive
analysis must be context specific. This means that care
should be taken when results are applied to a business

situation. With this in mind, a particular scenario was
chosen in which to conduct the investigation. 

As with the BT business game, the evolutionary game
has four players — a regulator, a market leader firm, a
market follower firm and a potential entrant. In contrast to
the business game, where players were free to choose and
change their own strategic objectives, in the EGT model,
strategic objectives are assumed for the players (see the
Appendix).

Players also had a limited set of strategies (see Table 4).
These strategic options were also open to players of the BT
business game, with the exception of ‘aggregator’.

Table 4 Strategic options for players — see the Appendix for 
interpretation.

The aggregator buys call minutes to certain
destinations in bulk from the network operator who is
offering the cheapest wholesale price to such destinations
and then sells the call minutes to the customer at prices
cheaper than the retail prices offered by network
operators. The aggregator is thus able to earn profits by
exploiting the difference between wholesale and retail
prices.

4.2.2 Static and dynamic games
Each of the dynamic models were formulated from the
same static (one-shot) game which is represented in
normal form in which the pay-off function for the various
combinations of player strategies is represented by a pay-
off matrix, whose dimension is equal to the number of
players. Thus, the pay-off matrix represents the cognitive
decision model of the agents. As there are four players in
the scenario, cross sections of the matrix could be
displayed by fixing two of the player’s strategies. For
example, when the potential entrant chooses to enter and
the regulator chooses to punish, the pay-offs can be
displayed as:

   Each entry is a four-dimensional vector displaying the
pay-offs to each of the players. 

The game becomes dynamic after the introduction of
time and by considering players as agents with the ability

Market leader Aggressive, expand, consolidate.

Market follower Aggressive, expand, consolidate.

Potential entrant Don’t enter, rent, build, and aggregate.

Regulator Punish, don’t punish.

            ML’s strategies

           A                         E                       C

MF’s
Strategies

A

E

C

a11 b11 c11 d11, , ,( ) a12 b12 c12 d12, , ,( ) a13 b13 c13 d13, , ,( )

a21 b21 c21 d21, , ,( ) a22 b22 c22 d22, , ,( ) a23 b23 c23 d23, , ,( )

a31 b31 c31 d31, , ,( ) a32 b32 c32 d32, , ,( ) a33 b33 c33 d33, , ,( ) 
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to ‘learn’ but the dynamics of the game are dependent on
the values in the pay-off matrix and any particular scenario
is represented by a particular choice of pay-off matrix.

4.2.3 Learning models
The learning mechanisms all take the same basic form. At
various points in time the players go through the cycle
shown in Fig 8.

Fig 8 Basic learning mechanism.

Three basic models of the learning mechanisms were
developed:

• repeated games with pure strategies and best
responses,

• best response models with discrete time and mixed
strategies,

• models based on the replicator dynamics.

Repeated games
Repeated games are simply finite repetition of the static
game. Each player is assumed to have full knowledge of its
own pay-off function, to calculate their best response
given their beliefs about other players’ strategies and to
start the game with prior beliefs. Each round consists of the
players simultaneously playing their best responses.
Variants to this approach included: 

• memory — updating beliefs using the last n rounds,

• sampling — updating beliefs using a sample of the last
n rounds,

• mutation — players randomly change beliefs,
equivalent to gaining false beliefs,

• updating beliefs at random intervals.

Best response games
In these models, time is represented as a discrete variable.
At regular intervals the players simultaneously play a
mixed strategy (representing probabilities of their playing
each of the pure strategies) depending on their current
state and calculated best response, given their beliefs. Each
player updates their beliefs by naively assuming the other
players will stay playing the same mixed strategy. Again,
variants to this approach are possible: 

• Poisson updating — each player only updates beliefs
at particular points in time,

• mutation. 

Replicator models
These are similar to best response games — at regular
intervals the players simultaneously play a mixed strategy
depending on their current state and their expected pay-
off from each of their pure strategies (given their beliefs).
However, in these models, players evolve strategies
according to a fitness criterion, rather than simply playing
the best response. Variants are similar to best response.

4.2.4 Results
The behaviour of the various games has been studied in
some detail. Perhaps the most important conclusion of this
work is that, in general, the system does not reach
equilibrium. Figures 9 and 10 show results for a repeated
game. 

An equilibrium is reached for the repeated game when
agents have longer memories (last 5 rounds) (Fig 10).

Cyclical behaviour is also observed with repeated
games and replicator models (Fig 11), but in the case of
replicator models the changes occur over long time periods
reflecting the more gradual evolution of strategy in these
models. 

Comparison of Figs 10 and 11 show that choice of
learning model can have a radical effect on players’
fortunes — in Fig 10 (best response), the equilibrium
strategy for the potential entrant is ‘don’t enter’. In
contrast, in Fig 11, the potential entrant’s strategy evolves
to a mixture of ‘rent’ and ‘aggregate’. 

5. Looking to the future
Complexity science is often presented as a way of
‘improving’ policy making. In much of the discussion on
complexity and strategy or policy making, it is assumed
that it is possible to make ‘better decisions’ using rational
processes. Indeed, this is often a key justification in
research applications. The promise of both complex
systems theory and simulation is that of ‘better control’ —
better control of organisations, better control of
economies, better control of markets and better control of
societies4. Thus, James W Herriot (VP, BiosGroup) is
recently quoted as stating: ‘Complexity science is the
structural engineering of organisations’. These are big
claims, and it is important to understand the capabilities
and limitations of both ‘complexity science’ and the
simulation techniques used to study complexity. 

gain knowledge in
order to update beliefs

actual play choose an optimal
strategy

4 Such objectives clearly have ethical implications, but there is not space to
discuss these in this paper. Fortunately, one of the messages of complexity
is that there are limits to the extent to which complex systems can, in
practice, be controlled.
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Fig 9 Showing periodicity of strategies when only previous round remembered.

 Fig 10 Equilibrium outcome reached when memory increased to last 5 rounds.
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This paper has discussed the role of modelling in
strategic decision making, and the types of information
obtained from different modelling techniques. Decision
making is best seen as a process, of which modelling forms
a part. Models allow users to investigate alternative
strategies and understand implications of specific courses
of action. A key role therefore is ‘hypothesis testing’. 

However, a specific model provides just one view of the
entire problem, and different models reveal different
issues. Thus, in looking at product diffusion, a system
dynamics model enabled us to develop a top-down view of
key issues, and to investigate alternative growth strategies
based on advertising and quality improvement. However,
the system dynamics approach gave little insight into the
way information actually spread within a population. For
this, an agent-based model was required. Similarly, in
looking at decision-making in a competitive environment, a
computer-based game gives a rich experience of the
problem and can reveal some complex strategies, but it is
not possible to explore all possible options. Evolutionary
game theory uses a much simpler set of strategies, but
revealed the complex way these can interact together to
give a constantly changing market-place. 

If simulations are to live up to the claims made for
them much work needs to be done. The discussion above
shows clearly the importance of identifying appropriate

cognitive and learning models. We saw in the discussion of
evolutionary game theory how the choice of learning
model could radically alter the preferred strategies of some
players. 

The issue of competing models needs to be considered
more carefully. Some work (for example, Arthur [35]) has
shown how a near optimal solution is obtained by the
interplay of different (evolving) decision-making models
within a population. In this context, no single model can be
considered right or wrong; the outcome is an emergent
property. 

Finally, the decision-making process in organisations
should be looked at more carefully. For simplicity, we
usually assume managers have just one problem to look at,
and the decision-making process is one of seeking options
(alternative solutions) and by some cognitive process
choosing the ‘best’ solution. This is a rational choice model.
However, in messy reality, managers are faced with a
constant stream of problems and alternative courses of
action. We can no longer think of a ‘problem’ in isolation,
but have to consider the many competing demands for
managers’ attention [36]. 

All three issues (cognitive models, the interaction
between competing models and the competition between
problems for managers’ time) undermine a simplistic view

 Fig 11 Evolution of strategies using replicator model.
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of a simulation providing an answer to a problem.
Simulation models, of the type developed to study
complex systems, have the potential to greatly improve
both the design of organisations and the basis on which
decisions within those organisations are made. However, in
the field of social systems there is still much work to be
done, not only in constructing realistic models, but in
understanding how such models can be used effectively in
a decision-making process.

Appendix

Strategic objectives of players

Market Leader

• Uphold strong position by maintaining or increasing
market share

• Market growth

• Deter potential entrants

• Prevent the market follower from expanding

• Avoid punishment from the regulator

Market Follower

(Possibly interpreted as the aggregate behaviour of smaller
firms)

• Increase market share, preferably at the expense of
the market leader

• Market growth

• Deter potential entrant unless co-operation can be
established

Potential Entrant

• Enter the market in a profitable manner

Regulator

• Market growth

• Increase competition

• (Rather optimistically) to decrease its own role in the
future

Interpretation of strategies
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