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The Spread of Behavior in an Online
Social Network Experiment
Damon Centola

How do social networks affect the spread of behavior? A popular hypothesis states that networks
with many clustered ties and a high degree of separation will be less effective for behavioral
diffusion than networks in which locally redundant ties are rewired to provide shortcuts across the
social space. A competing hypothesis argues that when behaviors require social reinforcement, a
network with more clustering may be more advantageous, even if the network as a whole has a
larger diameter. I investigated the effects of network structure on diffusion by studying the spread
of health behavior through artificially structured online communities. Individual adoption was
much more likely when participants received social reinforcement from multiple neighbors
in the social network. The behavior spread farther and faster across clustered-lattice networks than
across corresponding random networks.

Many behaviors spread through social
contact (1–3). As a result, the network
structure of who is connected to whom

can critically affect the extent to which a behav-
ior diffuses across a population (2–8). There are
two competing hypotheses about how network
structure affects diffusion. The “strength of weak
ties” hypothesis predicts that networks with
many “long ties” (e.g., “small-world” topologies)
will spread a social behavior farther and more
quickly than a network in which ties are highly
clustered (4–6). This hypothesis treats the spread
of behavior as a simple contagion, such as dis-
ease or information: A single contact with an
“infected” individual is usually sufficient to trans-
mit the behavior (2). The power of long ties is
that they reduce the redundancy of the diffusion
process by connecting people whose friends do
not know each other, thereby allowing a behavior
to rapidly spread to other areas of the network
(3–5). The ideal case for this lack of redundancy
is a “random” network, in which, in expectation
for a large population, each of an individual’s
ties reaches out to different neighborhoods (4, 9).
The other hypothesis states that, unlike disease,
social behavior is a complex contagion: People
usually require contact with multiple sources of
“infection” before being convinced to adopt a be-
havior (2). This hypothesis predicts that because
clustered networks have more redundant ties,
which provide social reinforcement for adoption,
they will better promote the diffusion of behav-
iors across large populations (2, 7). Despite the
scientific (6, 7, 10) and practical (1, 2, 11) im-
portance of understanding the spread of behavior

through social networks, an empirical test of
these predictions has not been possible, because
it requires the ability to independently vary the
topological structure of a social network (12).

I tested the effects of network structure on
diffusion using a controlled experimental approach.
I studied the spread of a health behavior through
a network-embedded population by creating an
Internet-based health community, containing 1528
participants recruited from health-interest World
Wide Web sites (13).

Each participant created an anonymous online
profile, including an avatar, a user name, and a set
of health interests. They were then matched with
other participants in the study—referred to as
“health buddies”—as members of an online health
community. Participants could not contact their
health buddies directly, but they could receive
emails from the study informing them of their
health buddies’ activities. To preserve anonymity
and to prevent people from trying to identify

friends whomay have also signed up for the study
(or from trying to contact health buddies outside
the context of the experiment), I blinded the
identifiers that people used. Participants made
decisions about whether or not to adopt a health
behavior based on the adoption patterns of their
health buddies. The health behavior used for this
study was the decision to register for an Internet-
based health forum, which offered access and rat-
ing tools for online health resources (13).

The health forum was not known (or acces-
sible) to anyone except participants in the ex-
periment. This ensured that the only sources of
encouragement that participants had to join the
forumwere the signals that they received from their
health buddies. The forum was populated with ini-
tial ratings to provide content for the early adopters.
However, all subsequent content was contributed
by the participants who joined the forum.

Participants arriving to the study were randomly
assigned to one of two experimental conditions—
a clustered-lattice network and a random network—
that were distinguished only by the topological
structure of the social networks (Fig. 1). In the
clustered-lattice–network condition, there was a
high level of clustering (5, 6, 13) created by re-
dundant ties that linked each node’s neighbors to
one another. The random network condition was
created by rewiring the clustered-lattice network
via a permutation algorithm based on the small-
world–network model (6, 13–15). This ensured
that each node maintained the exact same number
of neighbors as in the clustered network (that is, a
homogeneous degree distribution), while simulta-
neously reducing clustering in the network and
eliminating redundant ties within and between
neighborhoods (4, 6, 14).

The network topologies were created before
the participants arrived, and the participants could
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Fig. 1. Randomization of
participants to clustered-
lattice and random-
network conditions in a
single trial of this study
(N = 128, Z = 6). In
each condition, the black
node shows the focal
node of a neighborhood
to which an individual is
being assigned, and the
red nodes correspond to
that individual’s neigh-
bors in the network. In
the clustered-lattice net-
work, the red nodes share
neighbors with each other, whereas in the random network they do not. White nodes indicate individuals who
are not connected to the focal node.
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not alter the topology in which they were em-
bedded (e.g., by making new ties). In both condi-
tions, each participant was randomly assigned
to occupy a single node in one network. The
occupants of the immediately adjacent nodes in
the network (i.e., the network neighbors) consti-
tuted a participant’s health buddies (13). Each
node in a social network had an identical number
of neighbors as the other nodes in the network,
and participants could only see the immediate
neighbors to whom they were connected.

Consequently, the size of each participant’s
social neighborhood was identical for all par-
ticipants within a network and across conditions.
More generally, every aspect of a participant’s
experience before the initiation of the diffusion
dynamics was equivalent across conditions, and
the only difference between the conditions was
the pattern of connectedness of the social net-

works in which the participants were embedded.
Thus, any differences in the dynamics of diffu-
sion between the two conditions can be attri-
buted to the effects of network topology.

There are four advantages of this experi-
mental design over observational data. (i) The
present study isolates the effects of network
topology, independent of frequently co-occurring
factors such as homophily (3, 16), geographic
proximity (17), and interpersonal affect (4, 18),
which are easily conflated with the effects of
topological structure in observational studies
(2, 3, 11). (ii) I study the spread of a health-
related behavior that is unknown to the partici-
pants before the study (13), thereby eliminating
the effects of nonnetwork factors from the dif-
fusion dynamics, such as advertising, availability,
and pricing, which can confound the effects of
topology on diffusion when, for example, the

local structure of a social network correlates
with greater resources for learning about or
adopting an innovation (11, 19). (iii) This study
eliminates the possibility for social ties to change
and thereby identifies the effects of network
structure on the dynamics of diffusion without
the confounding effects of homophilous tie
formation (1, 20). (iv) Finally, this design allows
the same diffusion process to be observed
multiple times, under identical structural condi-
tions, thus allowing the often stochastic process of
individual adoption (21) to be studied in a way
that provides robust evidence for the effects of
network topology on the dynamics of diffusion.

I report the results from six independent trials
of this experimental design, each consisting of a
matched pair of network conditions. In each pair,
participants were randomized to either a clustered-
lattice network or a corresponding random net-
work (13). This yielded 12 independent diffusion
processes. Diffusion was initiated by selecting a
random “seed node,” which sent signals to its net-
workneighbors encouraging them to adopt a health-
related behavior—namely, registering for a health
forum Web site (13). Every time a participant
adopted the behavior (i.e., registered for the health
forum), messages were sent to her health buddies
inviting them to adopt. If a participant had mul-
tiple health buddies who adopted the behavior,
then she would receive multiple signals, one from
each neighbor. Themore neighbors who adopted,
themore reinforcing signals a participant received.
The sequence of adoption decisions made by the
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Fig. 2. Time series showing the adoption of a health behavior spreading through clustered-lattice (solid
black circles) and random (open triangles) social networks. Six independent trials of the study are
shown, including (A) N = 98, Z = 6, (B to D) N = 128, Z = 6, and (E and F) N = 144, Z = 8. The success
of diffusion was measured by the fraction of the total network that adopted the behavior. The speed of
the diffusion process was evaluated by comparing the time required for the behavior to spread to the
greatest fraction reached by both conditions in each trial.
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Fig. 3. Hazard ratios for adoption for individuals
receiving two, three, and four social signals. The
hazard ratio g indicates that the likelihood of
adoption increases by a factor of g for each ad-
ditional signal k, compared to the likelihood of
adoption from receiving k – 1 signals. The 95%
confidence intervals from the Cox proportional
hazards model are shown by error bars. The effect
of an additional signal on the likelihood of adop-
tion is significant if the 95% confidence interval
does not contain g = 1 (13).
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members of each social network provides a pre-
cise time series of the spread of the behavior
through the population. It also provides an exact
record of the number of signals required for in-
dividuals to adopt the behavior. The starting time
(time = 0) for each diffusion process corresponds
to the instant when the seed node was activated
and the initial signals were sent. For each trial, the
diffusion process was allowed to run for 3 weeks
(~1.8 million seconds). To test for the possible
effects of population size (N) and degree (Z, the
number of health buddies each person had) on the
diffusion dynamics, I used three different versions
of the experiment: (i) N = 98, Z = 6; (ii) N = 128,
Z = 6; and (iii) N = 144, Z = 8 (13). The modest
range of population sizes tested and the corre-
spondingly narrow range of degrees were due to
the challenges of recruiting large numbers of peo-
ple simultaneously. Among the networks I used,
there were no effects of population size (13).

The results show that network structure has a
significant effect on the dynamics of behavioral
diffusion. Surprisingly, the topologies with greater
clustering and a larger diameter were much more
effective for spreading behavior. Figure 2 shows
the time series generated by the six indepen-
dent trials of the experiment. Adoption typically
spread to a greater fraction of the population in
the clustered networks (solid black circles) than

in the random networks (open triangles). On
average, the behavior reached 53.77% of the
clustered networks, whereas only 38.26% of
the population adopted in the random networks
(13). I also found that the behavior diffused
more quickly in the clustered networks than in
the random networks. The average rate of dif-
fusion in the clustered networks (0.2820 × 10–3

nodes/s) was more than four times faster than
that of the random condition (0.0643 × 10–3

nodes/s). Differences in both the success and
the rate of diffusion between network conditions
are statistically significant (P < 0.01 using the
Wilcoxon rank sum–Mann-Whitney U test) (13).

The experimental findings were qualitatively
the same across different network and neighbor-
hood sizes. However, networks with a greater
degree (Z = 8) performed better than those with
a lower degree (Z = 6). Although this finding is
consistent with the hypothesis that more redun-
dant ties between neighborhoods can improve
the global spread of behavior, it may also indicate
that other topological features, such as degree
and density, are relevant factors affecting be-
havioral diffusion (2, 7). This suggests impor-
tant avenues for future research.

At the individual level, the results (Fig. 3)
show that redundant signals significantly in-
creased the likelihood of adoption; social rein-

forcement from multiple health buddies made
participants much more willing to adopt the be-
havior. Figure 3 compares the baseline likelihood
of adoption after receiving one social signal to
the increased likelihood of adoption for nodes
receiving second, third, and fourth reinforcing
signals. Participants were significantly more likely
to adopt after receiving a second signal than
after receiving only one signal (P < 0.001 using
the Cox proportional hazards model). Receiving
a third signal also significantly increased the like-
lihood of adoption, but with a smaller marginal-
effect size (P < 0.05, Cox proportional hazards
model) (13). Additional signals had no significant
effect. This can be attributed to the attenuation of
the sample size as the number of signals increased.

A secondary, but important, issue related to
adoption is the level of commitment that individ-
uals have to a behavior once they have adopted it.
To investigate the effects of social reinforcement
on individuals’ level of engagement with the
health forum, I compared the number of return
visits to the forum after registering, for adopters
grouped by the number of social signals that they
received (Fig. 4) (participants could not receive
additional signals once they had registered).
Figure 4 shows pairwise comparisons of the
number of return visits for adopters receiving
only one signal (solid lines) versus those receiv-
ing two to five signals (dashed lines in panels A
to D, respectively). Though less than 15% of
adopters receiving one signal made a return visit
to the forum, more than 30% of participants re-
ceiving two signals made return visits, and 40%
of participants receiving three signals made at least
one return visit. Pairwise statistical comparisons
between group one and groups two through five
are all significant (P < 0.01 for all four compar-
isons, using the Kolmogorov-Smirnov test) (13),
indicating that participants who received more than
one social signal were significantly more likely to
return to the health forum than those who only
received a single signal. This suggests that there
was a significant effect of social reinforcement on
participants’ level of engagement with the adopted
behavior.

As with all experiments, design choices that
aided my control of the study also put constraints
on the behaviors that I could test. A key limitation
of my design is that, unlike in my experiment,
adopting a new health behavior is often extreme-
ly difficult in the real world. To adopt behaviors
such as getting a vaccination, going on a diet,
starting an exercise routine, or getting a screening,
people may be required to pay the costs of time,
deprivation, or even physical pain. Because of
this, I expect that the need for social reinforce-
ment would be greater for adopting these health
behaviors than it was for the behavior in my
study. Consequently, the diffusion of real-world
health behaviors may depend even more on
clustered-network structures than did the diffu-
sion dynamics reported in my results.

An additional constraint of my study was that
participants did not have any direct commu-
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nication with their health buddies or information
about their identities. This allowed me to isolate
the effects of network topology on the dynamics
of diffusion without the presence of confounding
variables. However, it also raises the question of
what the strength of the effects of network to-
pology would be when allowed to interact with
the effects of interpersonal relationships. An im-
portant assumption of this study is that the effects
of network topology will not be overwhelmed by
individuals’ exposure to other social factors. Pre-
vious studies have suggested that factors such as
homophily and strong interpersonal affect in
social ties can improve the diffusion of behav-
iors through social networks (3, 18). In the real
world, these features of social relationships tend
to be highly correlated with the formation of
clustered social ties (3, 22, 23). Consequently, I
expect that these reinforcing factors would am-
plify the observed effects of clustered social
networks in promoting the diffusion of health
behaviors across a large population. However,
new experimental designs are required to test the
interaction effects of these variables (and other
variables such as gender, memory, and frequency
of interaction) on the spread of social behaviors.

Evidence in support of the “strength of weak
ties” hypothesis has suggested that networks with
high levels of local clustering and tightly knit
neighborhoods are inefficient for large-scale dif-
fusion processes (4, 5, 9). My findings show that,
not only is individual adoption improved by re-
inforcing signals that come from clustered social
ties (Fig. 3), but this individual-level effect also
translates into a system-level phenomenonwhere-
by large-scale diffusion can reach more people

and spread more quickly in clustered networks
than in random networks (Fig. 2). Whereas lo-
cally clustered ties may be redundant for simple
contagions, like information or disease (4, 6, 24),
they can be highly efficient for promoting behav-
ioral diffusion. On the basis of these findings, I
predict that public health interventions aimed at
the spread of new health behaviors (for instance,
improved diet, regular exercise, condom use, or
needle exchange) may do better to target clustered
residential networks rather than the casual contact
networks across which disease may spread very
quickly (25)—particularly if the behaviors to be
diffused are highly complex (for instance, because
they are costly, difficult, or contravene existing
norms).
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Human-Restricted Bacterial Pathogens
Block Shedding of Epithelial Cells by
Stimulating Integrin Activation
Petra Muenzner,1 Verena Bachmann,1 Wolfgang Zimmermann,2

Jochen Hentschel,1,3 Christof R. Hauck1,4*

Colonization of mucosal surfaces is the key initial step in most bacterial infections. One mechanism
protecting the mucosa is the rapid shedding of epithelial cells, also termed exfoliation, but
it is unclear how pathogens counteract this process. We found that carcinoembryonic antigen
(CEA)–binding bacteria colonized the urogenital tract of CEA transgenic mice, but not of wild-type
mice, by suppressing exfoliation of mucosal cells. CEA binding triggered de novo expression of the
transforming growth factor receptor CD105, changing focal adhesion composition and activating
b1 integrins. This manipulation of integrin inside-out signaling promotes efficient mucosal
colonization and represents a potential target to prevent or cure bacterial infections.

During colonization of mucosal surfaces,
incoming microbes must cope with mul-
tiple host defenses (1). One protective

mechanism of the mucosa in stratified and squa-
mous tissues is the accelerated turnover and
shedding of superficial epithelial cells, also re-
ferred to as exfoliation (2–4). Although in vitro

studies have suggested that microbes modulate
cell detachment (5, 6), it is currently unknown how
successful mucosal pathogens deal with the ex-
foliation response in vivo. Neisseria gonorrhoeae,
a Gram-negative microorganism, causes one of
the most common sexually transmitted diseases
worldwide (7). Even though these bacteria can

induce the exfoliation of host cells upon contact
(8–11), they are able to establish themselves on
virtually every mucosal surface of the human
body.

To investigate how gonococci manage to col-
onize the urogenital mucosa efficiently, we per-
formed vaginal infection of femalemice (12). In line
with the innate capacity of epithelial cells to re-
spond to this bacterial challenge,N. gonorrhoeae
triggered detachment of superficial epithelial cells
within 20 hours (Fig. 1A) and only small numbers
of gonococci could be re-isolated from wild-type
mice (Fig. 1B). Gonococci are adapted to humans
as their sole natural host. One of the host-specific
virulence traits that gonococci share with other
specialized mucosal colonizers, including Hae-
mophilus influenzae,Moraxella catarrhalis, and
N. meningitidis, is the ability to recognize hu-
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